
15 October 1999

Ž .Optics Communications 170 1999 1–8
www.elsevier.comrlocateroptcom

Coherence properties of light in Young’s interference pattern
formed with partially coherent light

Sergey A. Ponomarenko, Emil Wolf )

Department of Physics and Astronomy and Rochester Theory Center for Optical Science and Engineering, UniÕersity of Rochester,
Rochester, NY 14627, USA

Received 7 June 1999; accepted 7 July 1999

Abstract

It has been shown not long ago that the spectrum of light in Young’s interference pattern formed by partially coherent
light differs, in general, from the spectrum of light incident on the pinholes; and, moreover, that the spectrum depends on the
position of the point of observation. In this paper we extend the analysis by deriving expressions for the spectral degree of
coherence and for the cross-spectral density of intensity fluctuations of the light at any pair of points in the interference
pattern. We illustrate the general results by examples. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Although it has been about 200 years ago since
Thomas Young made a major contribution to the
wave theory of light by describing a now famous
two-beam interference experiment, somewhat similar
experiments still attract a good deal of attention;
both in classical and in quantum optics. In the do-
main of classical optics it was discovered not long
ago that if the pinholes are illuminated with broad-
band light, in which case no interference fringes will
be formed, light in the region of superposition of the
two beams emerging from the pinholes nevertheless
contains important physical information. This is re-

w xvealed when the light is analyzed spectrally 1–4 .
One then finds that the spectrum of the light in the
region of superposition depends not only on the
spectrum of the light incident on the pinholes but

) Corresponding author.

also on the degree of coherence of the light as well
as on the position of the observation point. Using
this result one can deduce the value of the spectral
degree of coherence of the light at the two pinholes
from measurements of the observed spectral changes.
In turn, the knowledge of the spectral degree of
coherence may provide, in some cases, information
about the source of radiation. A possibility of using
this effect for remote sensing, for example, by the
use of van Cittern–Zernike theorem has been studied
and an application to determination of the angular
separation of double stars has also been considered
w x5–7 .

Somewhat analogous, though more restricted ex-
periments have been performed with matter waves,

w x Ž w x.especially with neutrons 8,9 see also 10 . In the
domain of quantum optics, Young’s interference ex-
periments carried out in recent years have provided
experimental tests of such basic concepts of quantum
physics as indistinguishability and photon localiza-

Žw x .tion 11 , Section 12.11 .
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It is clear from these remarks that interference
experiments of Young’s type are still of considerable
scientific interest, in spite of the long time which has
gone by since Thomas Young first described them.
In this paper we discuss an aspect of Young’s inter-
ference experiment which does not appear to have
been previously considered, namely the change in
the state of coherence of the light in the region of
superposition, when light incident on the pinholes is
partially coherent.

2. Coherence properties of Young’s interference
pattern formed with partially coherent light

Suppose that two pinholes P and P in a plane1 2

opaque screen AA are illuminated by partially coher-
Ž .ent light Fig. 1 . We will derive expressions for the

spectrum, the cross-spectral density and the spectral
degree of coherence of the light in the region of
superposition of the two beams emerging from the
pinholes.

We represent the field at any point P by an
� Ž .4ensemble of space frequency realizations U P, v

Žw x .11 , Section 4.7 . The field at any pair of points Q1

and Q in the interference pattern in the plane BB of2

observation, taken to be parallel to the plane AA,

Fig. 1. Illustrating the notation relating to the calculation of the
Ž .cross-spectral density W Q , Q , v in the Young’s interference1 2

pattern formed with partially coherent light.

expressed in terms of the realizations of the field at
the pinholes, is then given by the formulae

i k R11ikA e
U Q , v s U P ,vŽ . Ž .1 12p R11

i k R 21e
qU P ,v , 1aŽ . Ž .2 R21

i k R12ikA e
U Q , v s U P ,vŽ . Ž .2 12p R12

i k R 22e
qU P ,v . 1bŽ . Ž .2 R22

Here R is the distance from the pinhole P to thei j i
Ž .point Q i, js1, 2 , in the plane BB, A is the areaj

of each pinhole and ksvrc, c being the speed of
light in vacuum. We have assumed that the angles of
incidence and diffraction are small. The cross-spec-
tral density of the light at Q and Q is given by the1 2

Žw x Ž ..expression 11 , Eq. 4.7-37

² ) :W Q , Q , v s U Q , v U Q , v , 2Ž . Ž . Ž . Ž .1 2 1 2

where the angular brackets denote ensemble average
and asterisk denotes the complex conjugate. On sub-

Ž . Ž . Ž .stituting from Eqs. 1a and 1b into Eq. 2 one
finds that

2 i k R yRŽ .12 11kA e
W Q , Q , v s W P , P , vŽ . Ž .1 2 1 1ž /2p R R12 11

i k R yRŽ .22 21e
qW P , P , vŽ .2 2 R R22 21

i k R yRŽ .22 11e
qW P , P , vŽ .1 2 R R22 11

i k R yRŽ .12 21e
qW P , P , v ,Ž .2 1 R R12 21

3Ž .
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Ž . ² U Ž . Ž .:where W P , P , v s U P , v U P , v is the1 2 1 2

cross-spectral density of the light at the pinholes P1

and P . When P sP we have2 1 2

² ) :W P , P , v s U P , v U P , vŽ . Ž . Ž .1 1 1 1

sS P , v , 4aŽ . Ž .1

² ) :W P , P , v s U P , v U P , vŽ . Ž . Ž .2 2 2 2

sS P , v , 4bŽ . Ž .2

representing the spectral densities of the light at the
points P and P , respectively. It will be useful to1 2

introduce the spectral degree of coherence of the
Žw x .light at the two pinholes 11 , Section 4.3 :

W P , P , vŽ .1 2
m P , P , v s . 5Ž . Ž .1 2

S P , v S P , v( (Ž . Ž .1 2

Ž . Ž . Ž .Using the definitions 4 and 5 the formula 3 can
be rewritten as

2kA
)W Q , Q , v s K K S P , vŽ . Ž .½1 2 11 12 1ž /2p

qK ) K S P , vŽ .21 22 2

q2 S P , v S P , v( Ž . Ž .1 2

)= K K m P , P , vŽ .11 22 1 2

)qK K m P , P , v , 6Ž . Ž .512 21 2 1

where

eik R i j

K s . 7Ž .i j Ri j

Usually the spectra at P and P are approximately1 2

the same, in which case we will write

S P , v fS P , v sS P , v . 8Ž . Ž . Ž . Ž .1 2

Also, it follows from the definition of the spectral
degree of coherence that

m P , P , v sm) P , P , v . 9Ž . Ž . Ž .1 2 2 1

Ž . Ž . Ž .Using Eqs. 8 and 9 the formula 6 may be
rewritten as

2kA
) )W Q , Q , v f S v K K qK KŽ . Ž .1 2 11 12 21 22ž /2p

qK ) K m P , P , vŽ .11 22 1 2

) )qK K m P , P . 10Ž . Ž .12 21 1 2

Ž .It then follows at once from 10 that the spectrum of
the light at a point Q in the region of superposition0

is given by the expression

S Q , vŽ .0

'W Q , Q , v sSŽ1. v SŽ2. vŽ . Ž . Ž .0 0

Ž1. Ž2. < <(q2 S v S v m P , P , vŽ . Ž . Ž .1 2

=cos bqk R yR , 11Ž . Ž .20 10

where R and R denote the distances from the10 20

pinholes P and P to the point Q and b is the1 2 0

phase of the spectral degree of coherence
Ž . Žm P , P , v of the light at the two pinholes see1 2

.Fig. 1 . Further
2kA

Ž1.S v s S v , 12Ž . Ž . Ž .ž /2p R10

represents the spectral density which would be ob-
served at the point Q if only the pinhole P were0 1

open, the other pinhole being closed. Similarly,
2kA

Ž2.S v s S v , 13Ž . Ž . Ž .ž /2p R20

represents the spectral density which would be ob-
served at the point Q if only the pinhole P were0 2

Ž2.Ž . Ž1.Ž .open. In most cases of interest S v fS v ,
Ž .and Eq. 11 then reduces to

Ž1. < <S Q , v f2S v 1q m P , P , v�Ž . Ž . Ž .0 1 2

=cos bqk R yR . 144Ž . Ž .20 10

This formula, which is in agreement with a result
w xderived in 1 , shows that the spectrum of the light at

any point Q in the plane BB of observation differs,0

in general, from the spectrum of the light incident on
the pinholes; and that, moreover, it depends on the
location of the point Q and on the spectral degree0

of coherence of the light at the pinholes. In terms of
Ž . Ž .W Q , Q , v and S Q, v the spectral degree of1 2

coherence of the light in the plane BB of observation
can be calculated from the formula

W Q , Q , vŽ .1 2
m Q , Q , v s 15Ž . Ž .1 2

S Q , v S Q , v( (Ž . Ž .1 2

Ž . Ž .where W Q , Q , v and S Q, v are given by the1 2
Ž . Ž .expressions 10 and 11 respectively. In Section 4

we will illustrate some of the formulas derived in the
present section by examples.
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3. Correlation properties of intensity fluctuations
in Young’s interference pattern

It is also of interest to examine the intensity
correlations across the interference pattern formed in
Young’s interference experiment with partially co-
herent light. We will now consider this problem,
restricting ourselves to the situation when the light
obeys Gaussian statistics. This will be the case, for
example, when the light is of thermal origin. Unlike
in the case considered in the previous section, it is
now convenient to use the space-time rather than the
space-frequency representation.

Ž .Let V P, t be the complex analytic signal repre-
Žw x .sentation 11 , p. 92 of the field, assumed to be a

wide sense stationary random process of zero mean,
at a point P at time t and let

I Q, t sV ) Q, t V Q, t 16Ž . Ž . Ž . Ž .
be the instantaneous intensity at the point Q. Further
let

² :G Q , Q , t s I Q , t I Q , tqt 17Ž . Ž . Ž . Ž .I 1 2 1 2

be the intensity correlation function. On substituting
Ž . Ž .from 16 into 17 one obtains for G the followingI

expression in terms of the complex field variable
Ž .V Q, t :

² )

G Q , Q , t s V Q , t V Q , tŽ . Ž . Ž .I 1 2 1 1

) :=V Q , tqt V Q , tqt .Ž . Ž .2 2

18Ž .

Since the field is assumed to obey Gaussian statis-
tics, one can express the fourth-order correlation

Ž .function on the r.h.s of Eq. 18 in terms of the
second-order correlations using the moment theorem

Žw x .for Gaussians random processes 12 , Appendix I
and one finds that

² ) :G Q , Q , t s U Q , t U Q , tŽ . Ž . Ž .I 1 2 1 1

² ) := U Q , tqt U Q , tqtŽ . Ž .2 2

² ) :q U Q , t U Q , tqtŽ . Ž .1 2

² ) := U Q , tqt U Q , tŽ . Ž .2 1

² :² :s I Q , t I Q , tŽ . Ž .1 2

qG Q , Q , t G
) Q , Q , t ,Ž . Ž .V 1 2 V 1 2

19Ž .

where

² ) :G Q , Q , t s V Q , t V Q , tqt 20Ž . Ž . Ž . Ž .V 1 2 1 2

is the well-known mutual coherence function of the
Ž .field. In deriving Eq. 19 we have made use of the

assumed statistical stationarity of the field V.
In many cases it is more convenient to deal with

the correlations of the intensity fluctuations

² :D Is I Q, t y I Q, t 21Ž . Ž . Ž .

rather than with the correlations of the intensity
itself. Evidently

² :G Q , Q , t ' D I Q , t D I Q , tqtŽ . Ž . Ž .D I 1 2 1 2

² :sG Q , Q , t y I Q , tŽ . Ž .I 1 2 1

² := I Q , tqt . 22Ž . Ž .2

Ž . Ž . Ž .It follows from Eqs. 20 , 22 and 19 that

< < 2G Q , Q , t s G Q , Q , t . 23Ž . Ž . Ž .D I 1 2 V 1 2

Using this result one may readily obtain an expres-
sion for the cross-spectral density function

Ž .W Q , Q , v of the intensity fluctuations. Accord-D I 1 2

ing to the generalized Wiener–Khintchin theorem
Žw x .11 , p. 427 it is given by the temporal Fourier
transform of the space-time correlation function G .D I

Ž .On taking the Fourier transform on both sides of 23
and using the convolution theorem for Fourier trans-
forms one finds at once that

`
Xdv

X
)W Q , Q , v s W Q , Q , vŽ . Ž .HD I 1 2 V 1 22py`

=W Q , Q , vqv
X . 24Ž . Ž .V 1 2

Here we have used the fact that the cross-spectral
Ž .density function W Q , Q , v is the Fourier trans-V 1 2

form of the space-time correlation function
Ž . Ž .G Q , Q , t , given by 20 . As is known fromV 1 2

coherence theory in the space-frequency domain, WV

is the same function as the one defined formally in a
Ž . Žw xsomewhat different manner by Eq. 2 11 , see 4.7,

Ž . Ž ..especially Eqs. 4.7-2 and 4.7-8 .
Ž .The formula 24 is a generalization of an expres-

w xsion derived by Mandel 13 many years ago for the
case when the points Q and Q coincide.1 2
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4. Some implications of the theory and examples

w xIn 1 the changes in the spectrum of light in the
interference pattern were studied for the situation
where the pinholes were illuminated by a distant,
spatially incoherent source. We will consider the
same situation, but instead of studying spectral
changes we will examine the changes in the spectral
degree of coherence and in the cross-spectral density
of field and of the intensity fluctuations of the light
in the region of superposition.

w xAs in 1 we consider the situation where the two
pinholes P and P are illuminated by a uniform,1 2

spatially incoherent, secondary, circular source s of
radius a. We assume the arrangement to be symmet-
ric, with the plane AA of the pinholes being parallel
to the source plane s and with both the midpoint
between the pinholes and the center of the circular
source located on the normal to the plane of the
pinholes. We assume that the pinholes are in the far
zone of the source. As is well known, the light
incident upon the pinholes will be partially coherent.

Ž .Its spectral degree of coherence m P , P , v may1 2

be determined by the use of one of the reciprocity
relations for the far field generated by a planar,

w xsecondary, quasi-homogeneous source 14 . The rela-
tion is analogous to the far-zone form of the van

Žw x .Cittern–Zernike theorem 15 , Section 10.4.2 , and
one finds that

2 J va drcŽ .1
m P , P , v s . 25Ž . Ž .1 2

va drcŽ .
Here J is the Bessel function of the first kind and1

the first order, d is the distance between the two
pinholes, a is the angle which the radius of the
circular source subtends at the midpoint between the
two pinholes, c being the speed of light in vacuum
Ž . Ž . Ž .see Fig. 2 . On substituting from 25 into 10 and
expressing all the K ’s in terms of d, a and R onei j

Ž .obtains for the cross-spectral density W Q , Q , v1 2

the expression

W Q , Q , vŽ .1 2

2 22 vrc AŽ . 2 2iŽv r c.Ž x yx .r2 R1 2s S v eŽ .22p RŽ .
= cos v d x yx r2cR qm P , P , v� Ž . Ž .1 2 1 2

=cos v d x qx r2cR . 264Ž . Ž .1 2

Fig. 2. Illustrating the notation relating to the calculation of the
spectral degree of coherence at the pinholes P and P illumi-1 2

nated by light from spatially incoherent, uniform, planar, sec-
ondary, circular source s of radius a. The plane of observation
BB is in the far zone of the source.

Ž .Here m P , P , v is the spectral degree of coher-1 2

ence of the source at two points P and P . For a1 2

spatially incoherent, planar, secondary source which
we will consider in our numerical examples, it is

Ž . Ž .given by 25 . In deriving 26 we have assumed, for
simplicity, that the observation points Q and Q lie1 2

in BB on the line parallel to the line joining the
Ž .pinholes see Fig. 2 , but our analysis can readily be

extended to the case of arbitrary locations of the
observation points.

Suppose now that the two points Q and Q in1 2

the observation plane BB are located symmetrically
X Ž .with respect to the line OO see Fig. 2 . We will

refer to this line as the optical axis. Let us denote by
Q the point located symmetrically with respect to1

Ž .Q and let xsx syx . It then follows from 261 1 2

that

2 22 vrc AŽ .
w xW Q , Q , v s S v cos v xdrcR�Ž .Ž .1 1 22p RŽ .

qm P , P , v . 274Ž . Ž .1 2

Ž . Ž .Next, we substitute from 27 into 15 and obtain
the following expression for the spectral degree of
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coherence at a pair of points located symmetrically
with respect to the optical axis of the system:

� 4cos v xdrcR qm P , P , vŽ .1 2
m Q , Q , v s .Ž .1 1 � 41qm P , P , v cos v xdrcRŽ .1 2

28Ž .
< Ž . < < ŽWe note that when cos v xdrRc s1, m Q ,1

. <Q , v s1. This result implies that at pairs of points1

in the observation plane BB, located symmetrically
with respect to the optical axis, for which

v xd
sp n , ns0, "1, "2, . . . , 29Ž . Ž .

Rc

the field will be spatially completely coherent at
frequency v, regardless of the spectral degree of
coherence of the source. Further, we note that the

Fig. 3. The spectra at different points Q located at off-axis distance x in the observation plane BB, when the angular radius of the source
Ž .subtended at the pinholes is a in radians . The spectrum of the incident light is assumed to be blackbody spectrum at temperature 3000 K.

Ž w x.The parameters used in the calculation are ds0.1 cm and Rs150 cm. After D.F.V. James and E. Wolf 1 .
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Ž .pairs of points given by 29 correspond to symmet-
Ž .rically located maxima of intensity at frequency v

Žw x .14 , p. 261 . Hence the absolute value of the spec-
tral degree of coherence reaches its maximum at
pairs of maxima of intensity located symmetrically
with respect to the optical axis. On the other hand, at
pairs of symmetrically located minima of intensity in

Ž .the observation plane BB, cos v xdrRc s0, i.e., at
points for which

v xd
sp nq 1r2 , ns0, "1, "2, . . . .Ž . Ž .

Rc
30Ž .

Ž . Ž . Ž .Eq. 28 implies that m Q , Q , v sm P , P , v .1 1 1 2
Ž . Ž .We see from 28 that at the points given by 30 the

absolute value of the spectral degree of coherence
reaches its minimum. It follows that the modulus of
the spectral degree of coherence of the field at any
pair of points symmetrically located with respect to

the optical axis in the plane of observation is bounded
from below by the value of the modulus of the
spectral degree of coherence of the source.

We will now illustrate the change in the state of
coherence of light in the plane of observation by a
numerical example. We consider Young’s interfer-
ence pattern formed with partially coherent thermal
light generated by a planar secondary source with the

Ž .spectral degree of coherence given by 25 . We
assume that the spectrum of light incident on the
pinholes is given by Plank’s law:

Bv 3

S v s . 31Ž . Ž .
exp "vrk T y1Ž .B

In this formula, " and k are Plank’s and Boltz-B

mann’s constants respectively, T is the absolute tem-
perature of the source, and B is a positive constant.

Ž .The spectrum calculated from 11 is shown in Fig.
3. In Fig. 4 the spectral degree of coherence of the

Fig. 4. The spectral degree of coherence of the field at symmetrically located points in the observation plane BB, separated by the distance
Ž .2 x. The angular radius of the source subtended at the pinholes is a in radians . The spectrum of the incident light is given by Plank’s

w xformula with the temperature Ts3000 K. The calculations were performed with the same choice of parameters d and R as in 1 , i.e.,
ds0.1 cm and Rs150 cm.
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Fig. 5. The normalized cross-spectral density function of the
intensity fluctuations of the light at symmetrically located points
in the observation plane BB, separated by the distance 2 xs1 cm.

2 4 Ž .4The normalization constant is NN s B A r4 p Rc . The source
subtends the angle a s3=10y4 rad at the pinholes. The spec-
trum of the incident light as well as the other numerical parame-
ters are the same as those in Figs. 3 and 4.

field at a pair of points located symmetrically with
respect to the optical axis in the plane of observation,

Ž .calculated from 28 is plotted against frequency, for
different values of the parameters. On comparing
Figs. 3 and 4 we see that, apart from the limiting

Žcase a™0, which corresponds to a completely
.coherent source , the spectrum as well as the spectral

degree of coherence of the field in the region of
superposition exhibits rapid oscillations as a function
of frequency. These oscillations are caused by inter-
ference of any particular frequency component of the
light emerging from the pinholes. In Fig. 5 the
normalized cross-spectral density of the intensity
fluctuations is plotted against the frequency v. We
see that it decreases as the frequency increases, but it
also oscillates, with approximately the same period
as the cross-spectral density, calculated for the same
separation between the points Q and Q .1 2

In summary, we have derived general expressions
for the cross-spectral density and the spectral degree
of coherence of the light, and the cross-spectral
density of the intensity fluctuations of light obeying
Gaussian statistics at any pair of points in the region
of superposition of two partially coherent beams. We
found that regardless of the spectral degree of coher-
ence of the source, the field across the pattern is

spatially completely coherent at all pairs of the max-
ima of intensity located symmetrically with respect
to the optical axis. We also noted that at the minima
of the intensity at pairs of points located symmetri-
cally with respect to the optical axis, the absolute
value of the spectral degree of coherence attains its
minimum, which is equal to that of the spectral
degree of coherence of the source at the same fre-
quency. Finally, we have also briefly discussed the
coherence properties of the Young’s pattern formed
with partially coherent light, radiated by a uniform,
spatially incoherent, planar, secondary source.
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